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Abstract

The high-energy portion of the electron energy distribution for

mixtures of uranium and helium at 1 atm, 5000°K, and a neutron flux of

2x1112 
/CM 2-sec have been calculated. The addition of He improves the

heat transport characteristics of the plasma and has the feature that the

He energy levels lie in the high-energy portion of the electron distri-

bution, potentially a;lLwing non-maxwellian excitation. It is concluded,

however, that the resulting reaction rates are marginal relative to

achieving inversion in He.
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Several schemes to do this have been suggested. (2 ^ For example, the

original application of the light-bulb reactor was as a rocket engine

in which a supercooled liquid is rapidly heated. 
(3 
	 As the liquid is

heated it is turned into a gas and the expanding hot gas is then sent to

a nozzle where it is used to propel the rocket.

Since then several other ideas have been suggested. One is H2 	 r
production from water. H 2 has been proposed as a substitute for

natural gas, the supply of which is rapidly being depleted. In most of

the schemes for H2 production a heat source on the order of 1000% is

required. (4 '
5)
 Others (6) require a radiation source to perform the

chemical breakdown of water. Both of these sources, radiation and heat,

are conveniently combined in a light-bulb reactor.

Another potential application is for nuclear pumped lasers. (7) This

would be a form of direct energy conversion where the electrons excite

one of the plasma species, causing it to lase. Laser energy represents

a desirable source of energy because its monoenergetic nature makes a

broad spectrum of applications possible.

Uranium plasmas themselves are of interest outside the realm of the

reactor. For instance a uranium plasma could be used for laser isotope

separation . (8) A laser pulse can be applied to a mixtu	 of gaseous

U-235 and U-238 such that preferential excitation or ionization of one

of the species is obtained. The ions can then be collected by electric

field methods. In the case of excited atoms, a second pulse can be used

to ionize them. Separation factors of 26 to many thousands are theoret-

ically possible by this method.(9)

Still other applications of the light-bulb reactor are its use as a

high-level actinide waste burner and as a breeder of U-233 from

thorium.(10,11)
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II. REVIEW OF PREVIOUS WORK.

Early work related to this topic was carried out by R. H. Lo (12)

and B. S. Wang.
(13)

 Their studies were concerned with the modeling of

a radiation induced plasma. More exactly they sought the electron

distribution due to a delta function source of high energy electrons.

Noble gases were used as the background species instead of uranium since

more experimental data was available as a check of the validity of the

model. Lo approached the problem analytically and his results agreed

well with both the experimental data available and with the Monte Carlo

simulation of Wang.

This work was followed up by that of Bathke. (1) He developed an

analytic model for a uranium plasma with a distributed high-energy

electron source. He also developed a Monte Carlo code to check the

validity of the analytic model. The two agree well within the

limiting assumptions of the analytic model.

The area of study was broadened by E. Mac;:da
(14)

 who worked on the

radiation transport aspect of the plasma. His results inalcate that

population inversions in pure uranium are possible and that the type of

radiation (frequency) eminating from the plasma may be modified by the

choice of different seed gases.

The work of D. Suhre (15) is also important to the present effort.

Suhre calculated the electron energy distribution in an N2 gas due to a

delta function source of high-energy electrons. This is significant

since prior work had only considered atomic species. Suhre calculated

analytically and measured experimentally the electron energy distribution.

For low-energy electrons the distribution "dips" significantly in the

region of 1 eV to 4 eV where the cross section for vibrational excita-

,...

I



tion of NZ by electron impact has a very large value (-10-16cm2).

Molecular species ultimately need to be considered in the case of UF6

which is what this whole effort has been aimed at.

The work presented here essentially represents an extension of

Bathke's (1) work to include a second species in addition to uranium.

4
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III. MODEL

A. Cross Sections

Differential energy transfer cross sections must be used in the

slowing down model used here. A formulation originally developed by

Gryzinski
(15)

 is used and is defined as follows:

do(E E' = therobabilitp	 y per unit energy that an electron

of a given energy, E, losing an amount of energy,

E'-E, in an excitation or ionization collision.

Evidently, if the differential cross section is integrated over all

possible energy losses E', the total cross section for a given event

results, i.e.

f
da E E' dE' = a(E)	 (1)

0

This model makes the assumption that ionization and excitation

collisions may be described as a collision between two free electrons.

The atomic electron is assumed to have a constant velocity and be

distributed isotropically about the nucleus. The treatment is thus

classical, but quantum mechanical corrections are included.(17)

The results shown in Figs. 1 and 2 were obtained using modified

Gryzinski cross for ionization and excitation of He and He+ by electrons.

An experimental ionization cross section for He is plotted in

Fig. 1 for comparison. The total cross section predicted by the

Gryzinski model agrees well with the experimental data. Also shown is

an experimental excitation cross section. Here the agreement between

theory and experiment is not nearly so good. The experimental cross

section exhibits no sharp peaking as does the theoretical curve. The

a
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situation is not as grim as it seems, however. The experimental curve

is only a sum of three excitation cross sections for different states

in He. It was not possible to include all states because data was not

available. The sum of the missing cross sections for the other states

could conceivably raise the total excitation cross section by 25%. In

fact the lack of a sharp peak In the experimental cross sections could

be explained by the missing n 3S, n i d, and n 
3 
d cross sections which ex-

hibit this type of peaking behavior. Despite this if one assumes only

a 25% increase in the experimental cross section, using the electron

distribution for a 40% U-60% He mixture, the theoretical cross section

,' •idicts about 2.7 times the number of excitation found using the exper-

imental curve. This is not considered to be too large a discrepency

considering the lack of complete experimental data.

B. Slowing Down Model

The model used to find the electron distribution, f(E), is quite

simple. It is derived by Bathke (I) and is:
CO

f(E)= f
E

S(E') dE'

f ( E )°	 E(2)

E Idt	 E

where S(E') is the electron source rate and (dell is the rate at which
\ ! E

electrons deposit their energy in the background species via excitation,

ionization, and coulomb collisions.

A rate of energy loss per collision may be thought of in the follow-

ing terms:

i
t	 w	 ^	 r	 I



The average energy loss per collision for an electron of energy E,

<E> 
loss, 

may be computed from the differential energy transfer cross

section as follows:

E . da E E' dE'	 00

<E>	 = fow _	 1	 E' da E E' dE'.
	 (4)

loss	 Co	 ^ a E	 dE
da E'dE,	

dE'	
fo

0

The probability of collision per unit path length for a given type

of interaction is simply the macroscopic cross section for that type of

collision, i.e. F,(E) = n •a(E) where n is the density of the background

species with which the electrons interact. Finally, the path length

traveled per unit time is the velocity of the electron, v. Hence,

Eq. (3) becomes

(dt)iE _ <E'loss Y(E) v	
(5)

00

= nv	 E' da(E,E' dE'	 (6)
f0dE

Equation (6) may be used to calculate the rate of energy loss per

excitation or ionization collision. However, for coulomb collisions

other expressions must be used which are readily available in the

literature. One such expression is (18)



10
._	

dE	 47re2	 2 
o(biv)	

2biv(mi) _biv2<dt>_- v	 Lni ei m	
-	 e	 (7)

mmi r

where

^i indicates a sum over all background species

L = coulomb logarithm ti 20

bi = (mi/2Ti)

m = mass of an electron; mi = mass of species i

v = velocity of the electron
2

0(x) = 1 - 2
	

e E dt.

'r fxw

The total rate of energy loss by the electrons is taken as the

sum of the individual loss processes, i.e.

(

dE	 __ dEl	 + dE^	 + dE^	
(8)dt1	 Ftcoulomb	 dt excitation dt ionization'

total	
collisions	 collisions	 collisions

There are two sources of electrons. The primary electrons arise

from the stripping of fission fragments in the fission of an atom of

U-235. This source accounts for the majority of the high-energy electrons.

The secondary electrons are created by ionization collisions between

the primary electrons and background species. These secondary electrons

may be thought of as a perturbation to the primary source. The primary

source of electrons may be calculated by integrating the fission frag-

ment distribution over the differential energy transfer cross section

for ionization. A first guess for the high-energy tail is obtained by

use of Eq. (2).

The secondary eixtron source is obtained in a similar fashion, the

only difference being that now the differential energy transfer cross

I

Obb
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section for ionization is integrated over the first guess electron

distribution. This secondary source is then added to the primary source

and a new distribution function is obtained. The procedure of inte-

grating the distribution over the ionization cross section to obtain a

new source which is in turn used to calculate a new distribution function

is repeated until the process converges to the final distribution

function.

C. Model for the Distribution Itself

The electron distribution itself is assumed to be the superposition

of a Maxwellian distribution of thermalized electrons and a high-energy

tail described by Eq. (2). The assumption and validity of a Maxwellian

will be discussed below. The derivation of Eq. (2) also requires various

assumptions including

a) A steady-state plasma and an infinite media

b) A homogeneous mixture of U-235 and He

c) Continuous slowing down of electrons

d) Negligible recombination of electrons with background species

e) Negligible upsca.ttering.

Assumptions a) and b) serve to define and simplify the problem under

study. Since the energy losses involved in ionization, excitation, or

coulomb collisions are small in comparison to the energy of the primary

electron, continuous slowing down of electrons is assumed. However, the

assumption rapidly breaks down on the low-energy end of the high-energy

tail where the electron energy is comparable to excitation and ionization

energies of helium and uranium. In comparison to a more exact Monte

Carlo calculation by Bathke (I) it may be seen that the model is not
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seriously in error. Recombination of electrons with background species

is ignored since the energetic electrons stripped from the fission

fragments will not recombine until they have sufficiently slowed down.

The energy at which this process typically takes place is out of the

domain under consideration. Upscattering is negligible for the same

reason. Note that these assumptions apply only to the calculation

of the high-energy tail. The only loss mechanism for high-energy

electrons is down scattering to thermal energies.
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A. Distribution Obtained

The distribution is assumed to be a superposition of a Maxwellian

and a high energy tail. Since the bulk of the electrons are in thermal

equilibrium described by the Maxwellian the Saha equation may be used

to predict the initial densities of the plasma constituents.

	

The electron density is important in calculating the 
dE 

due to	
.-

coulomb collisions. The Saha density of the electrons is used for an

initial guess for ne . Thus, the primary and secondary electrons pro-

duced by ionization of b,.ckground species are considered perturbations

to the Saha density and are added to it.

In the calculation of the Saha densities it is assumed that one in

104 helium atoms exist in the metastable state. This figure was arrived

at by an excited statL density calculation performed by Maceda(lg)

using Lo's distribution for He gas at 300°K. Although the distribution

functions obtained in this calculation and those of Lo are quite simi-

lar, a major difference between them is the gas temperature. The

temperatures in this calculation are over an order of ma gnitude greater

than the plasma temperature from which the one in 10 4 helium atoms in

the metastable state figure was obtained. However, this figure is thought

not to be in serious error and it is used as a first approximation for

the number of He-metastables. To arrive at a more accurate number, an

iterative scheme must be employed. The metastable density is initially

guessed at and the distribution function is then calculated. Given the

distribution, an excited-state-density calculation may be performed

yielding a new He-metastable density. This new He metastable density
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may then be used to recalculate the distribution function, and so on

until the process converges to the final distribution.

Any error introduced by assuming the ratio 1:10 4 is certainly

negligible for uranium concentration greater than 10% since the

f	 dominant contribution to the electron population is from uranium.

This is clearly seen in Fig. 4 which shows a plot of electron density

I
versus the partial pressure of uranium. The electron density falls off

linearly with 
Pu/Ptot 

until a concentration of about 10% uranium is

reached. Beyond that point the electron density falls off rapidly.

The assumed ratio might only be seriously in error for extremely low

uranium concentrations (< .1%).

In Fig. 3 the He+ density is seen to have a broad maximum at

3500°K and then starts to decrease slightly. This occurs because at

j	 --3500°K a significant portion of the He-metastables begin to ionize and

as the temperature increases beyond this point virtually all of the

I	 metastables ionize. At higher temperatures (>4000°K), virtually all the

He-metastables have been ionized. Since the He-metastable density is

initially assumed to be a constant fraction of the total number of He

atoms at any given temperature, and for high temperatures all of the

He-metastables become ionized, the He + curve should follow the He curve

at high temperatures. This is indeed what happens and since the He

density decreases with temperature so does the He + density.

The above trends for He and He + are borne out in Fig. 5 which dis-

plays the ionization fraction of both He and U versus temperature. The

ratio of He+ to He saturates at 10-4 corresponding to the fraction of He
i

initially assumed to be in the metastable state.

i



IO18

1016

M
E
U
iC

C

101

101 2

I

31

^a

101
0

U

U+

a	
--	 _	 He+

I
U++

^

I
1

t

I
I
I

2000	 4000	 6000	 8000

PLASMA TEMPERATURE $ °K

Fig. 3. Saha Densities at One Atmosphere vs. Temperature
for a Mixture of 50% U and 50% He.

15



16

10 1'

10 16

M
E

w

O
C

1016

	

1014	
i	 I

	

0	 0.2	 0.4	 0.6	 0.8	 1.0

Pure	 Pure

He	 P /P	 U
^ TOT

Fig. 4. Electron Density, n , vs. Partial Pressure
of U at 5000°K.	

e



17

^i

10-1

Z
O

Ud	 U
LL
Z 10-2

O

Q^
N

l
	 Z

O

lr	

10
"3

	

10-4
	 0

Li

3000	 4000	 5000	 6000	 7000	 8000

T. °K

^L
	

Fig. 5. Ionization Fraction of He and U vs. Temperature.



18

Figure 6 shows the distribution function obtained for various partial

pressures of U for a plasma temperature of 5000°K and a neutron flux of

2 x 1012/cm2-sec. The curves are normalized with respect to power, i.e.,

the power output from the entire plasma is the same in all cases. Since

the neutron flux is the same in all cases and power is proportional to

the neutron flux and the uranium concentration, constant power requires

the volume of the plasma to increase. The results scale linearly with

neutron flux(1).	

..

Several trends are evident in Fig. 6. One is that the magnitude of

the high-energy tail decreases as the uranium concentration decreases.

This is due to the increased stopping power, 
Mx
	 the plasma caused by

the increased concentration of helium. A sharp drop in the high-energy

tail at .20 eV is quite prominant for low uranium concentrations. This

drop corresponds to the peak of the He cross sections and is again

associated with the stopping power which in this case undergoes a step

change near the energy at which the He cross sections peak. Also shown

for reference are typical states of U and He. Note that the He + states

lie in the high-energy tail of the distribution.

Figure 7 shows the high-energy tails of Fig. 6 in greater detail.

The Maxwellian for 100% U is drawn in for reference. It should be noted

that the point of intersection of the thermal background described by

the Maxwellian and the high-energy tail is not well defined. The

electron density in this energy range (10 eV to 18 >V) is quite small

in coparison to the total electron population and the cross section for

excitation and ionization of uranium are quite large. Hence, even small

perturbations could easily cause a deviatirr from the assumed Maxwellian.

,.L	 r	 ^	 I
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R. Energy Loss Curves

Figure 8 shows the rate of electron energy loss due to coulomb

collisions with charged background species versus the partial pressure

of uranium for three different electron er+prgies. The energy loss is

greatest for the slowest electrons and decreases with increasing energy.

Also, the energy loss decreases with decreasing uranium concentration.

This occurs because as the uranium concentration decreases the total

number of ions decreases and since the coulomb interaction is a col-

lective interaction the energy lost per collision decreases with the

total ion density. Note that these curves closely resemble the shape

of the ionization fraction of uranium shown in Fig. 5.

F i gure 9 shows the ratio of the rate of electron energy loss due to

collisions (other than coulomb) with He and He+ to the total rate of

energy loss versus the partial pressure of uranium.

As is evident U, U+ , and U++ dominate the slowin g process. This

occurs for two reasons. First, the threshold for excitation and ioni-

zation of U, U+ , or U++ is mach lower than that of He. In general the

smaller the energy loss the more probable the event is. Hence the

probability of an electron losin g energy to U, U+ , or U++ is greater

than that of losing energy to He, or He + . Secondly, He+ is a minority

species. Because of this its contribution to the total 
^t 

is very

small. This leaves only ionization and a-,citation of neutral He as

loss mechanisms for electrons with He.

The total rate of electron energy loss versus the partial pressure

Cf uranium is shown in Fig. 10. An essentially linear decrease in

1
s
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dE	
with a decrease in partial pressure of uranium occurs for all

kTt-)t0t

three electron energies shown. Since an electron with an energy of

19.82 eV or less can neither ionize or excite He, the 
dt 

for the 15 eV

electron must tend towards zero as the concentration of uranium decreases.

For electron energies above 19.82 eV a nonzero limiting value of

	

(

dIt)	
is reached for zero concentration of uranium.Z tot

1

r
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V. DISCUSSION

The accuracy of the above results are limited to how well the

assumption of continuous slowing down is fulfilled and the accuracy of

the cross sections used. It was necessary to use the Gryzinski cross

section model for uranium although this model was developed for hydro-

genic atoms. No experimental data exists which could serve as a base

for comparison. However, Bathke (l) estimates the uncertainty in the

theoretical cross sections is a factor of two. The accuracy is also

limited in the 20 to 100 keV range by the weakening of the assumption

of continuous slowing down.

The results obtained here are consistent with those of Pathke(l)

in that in the limit of zero helium density his distribution is obtained.

As noted above, the density of the He-metastable state was assumed

to be 10 4 x density of helium. The exact ratio is not crucial to the

final results. If this ratio was lowered by an order of maqnitude it

would not change the distribution by more than .1^. Considering the

uncertainty in the cross-sections this is not thought to lead to a

serious error.
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3	 VI. CONCLUSION

The major reason for adding He to the uranium plasma is to take

advantage of non-maxwellian excitation due to the high-energy,	 9	 9	 9Y tail.

He was chosen because of its high lying excited states in the range

of the non-maxwellian tail. By the same token, because of the large

ionization potential of He, little of it is ionized. So by adding

He to the plasma the electron population is depleted which in turn

causes fewer excitations in both He and U. Thus the chances of

achieving an inversion seems slim.

There are several others reasons to suspect that inversions will

be difficult to achieve. One is that in a preliminary calculation

performed by Maceda with a neutron flux of 2x10 16/cm 2-sec, a temperature

of 5000°K, and 40a concentration of He, the excitation rates from

ground and the two metastable states (2's and 3's) up was significantly

less (10-4 ) than the corresponding down rates. Although the possi-

bility of ach i eving a laser is not excluded by this calculation, the

power from such a laser would he very low as the metastable densities

were calculated to be ti108/cm3.

The results of this study also indicate that the species with the

smaller excitation and ionization energies will dominate the slowing

down of electrons. The reason is that in such cases there are more

ways for the electron to slow down. For example little He is ionized

so that He+ contributes little to the coulomb dt .

'i



Of course the addition of He still improves the heat transport

properties of the plasma as mentioned 2 n the introduction. This is

quite desirable in many of the applications of uranium plasmas.

28
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